coin-anim
image image image image image image

ABSTRACT

This research project is a continuation of a previous study (Hicks, et al., 2006), which analyzed fire patterns produced from wood cribs.  The current study continued this fire patterns research by burning ten commercially available polyurethane (PU) foam chairs and documenting the fire patterns.  The reproducibility of fire patterns was analyzed to compare one PU foam chair test to the next, as well as in association to those produced by burning wood cribs.  Two aspects of fire pattern production were examined.  The first aspect focuses on the reproducibility of a conical shaped fire pattern formed on standard gypsum wallboard surfaces.  Second, this study analyzed the effects of the upper layer and its role in the production of a conical shaped fire pattern.  This study showed that although the time to reach the fire pattern differed, a duplicate fire pattern was reproduced from a similar loss of mass.  The results of this study illustrates that similar fuel packages will reproduce a similar conical shaped fire pattern.  Additionally, lowering of the upper layer was found to affect the resulting conical shaped fire pattern. A subsequent aspect of this research is the implication that these patterns can be utilized by fire investigators in determining an area of origin.

Read more... 

ABSTRACT

The fire investigation industry is considered to be lagging behind the rest of the forensic science fields in its assessment of the performance of methodological approaches and conclusions drawn by practitioners within the field.  Despite the best efforts of certifying bodies and industry members, there are still many unknowns within the profession.  As such, the researchers have collected a large survey of demographics to formulate a picture of our industry with regards to experience, age, employment, training, and opinions regarding methodology within the industry.  In addition to these demographics, the researchers collected data regarding area of origin determination both with and without measurable data (depth of char, calcination) to evaluate its effectiveness when applied without an on-site scene examination.  This permitted the comparison of the demographics and accuracy in determining the most important hypothesis in fire investigations, the area of origin. It is shown that 73.8% of the participants without measurable data and 77.7% with measurable data accurately determined the area of origin.  Thus, the total percentage of participants choosing the correct area increased 3.9% with the inclusion of measurable data as part of the given.  Additional selected outcomes from this research are presented within this paper.

Read more…

By Joe Sesniak, IAAI-CFI, IAAI-CI, CFEI, GIFireE

Loose electrical connections at screw terminals can create an increase in resistance, which promotes development of oxide layer(s) on the affected metals and localized heating. While the oxides are conductive (meaning the circuit will still “work”) its resistance is higher than that of the original metals involved (NFPA 921, 2014)[1]. The nature of the heating results in a locally high “watt density” and creates a potentially competent ignition source for proximal fuels (DeHaan, J., Icove, D., 2012)[2]. Recent literature, including works by Benfer and Gottuk (2013)[3], Korinek and Lopez (2013) [4] and Shea (2006)[5], provide detailed explanation of the chemical and physical processes of oxidation (copper I and copper II oxides) and corrosion associated with high resistance or “glowing” electrical connections. It is the visible effects of such localized high resistance heating on the receptacle terminals, and the persistence of these effects in a post-flashover fire environment, that are the subject of this paper. INTRODUCTION In this research, glowing connections were created on multiple electrical receptacles to produce heat effects on only one line side terminal connection of each receptacle. The purpose of this experiment was not to determine how heat effects manifest themselves on the terminals of electrical receptacles and associated conductors. The focus of this study was to determine whether or not the known effects persist beyond flashover at a visually perceptible level. This information is of importance to the fire investigator in the field. The reader should note that this work is considered preliminary. Potential variables were minimized, such as having conductors terminated on all screw connections and having multiple receptacles with varying loads on the same circuit. Further testing is required to evaluate the significance of such variables. Nonetheless the results of this testing are notable. The “heat damaged” test receptacles were installed in metal junction boxes and exposed to a room and contents fire that transitioned through flashover. The compartment was not instrumented. The point of origin and fuel load arrangement was selected to expose the receptacles to varying levels and duration of heat intensity. The post-flashover persistence of the effects of a glowing connection was subsequently visually evaluated. The intent was to provide fire investigators a resource for the preliminary field evaluation of electrical receptacles as a potential ignition source.

Loose electrical connections at screw terminals can create an increase in resistance, which promotes development of oxide layer(s) on the affected metals and localized heating. While the oxides are conductive (meaning the circuit will still “work”) its resistance is higher than that of the original metals involved (NFPA 921, 2014)[1]. The nature of the heating results in a locally high “watt density” and creates a potentially competent ignition source for proximal fuels(DeHaan, J., Icove, D., 2012)[2].  Recent literature, including works by Benfer and Gottuk (2013)[3], Korinek and Lopez (2013)[4] and Shea (2006)[5], provide detailed explanation of the chemical and physical processes of oxidation (copper I and copper II oxides) and corrosion associated with high resistance or “glowing” electrical connections. It is the visible effects of such localized high resistance heating on the receptacle terminals, and the persistence of these effects in a post-flashover fire environment, that are the subject of this paper.

INTRODUCTION

In this research, glowing connections were created on multiple electrical receptacles to produce heat effects on only one line side terminal connection of each receptacle. The purpose of this experiment was not to determine how heat effects manifest themselves on the terminals of electrical receptacles and associated conductors. The focus of this study was to determine whether or not the known effects persist beyond flashover at a visually perceptible level. This information is of importance to the fire investigator in the field. The reader should note that this work is considered preliminary. Potential variables were minimized, such as having conductors terminated on all screw connections and having multiple receptacles with varying loads on the same circuit. Further testing is required to evaluate the significance of such variables. Nonetheless the results of this testing are notable.The “heat damaged” test receptacles were installed in metal junction boxes and exposed to a room and contents fire that transitioned through flashover. The compartment was not instrumented. The point of origin and fuel load arrangement was selected to expose the receptacles to varying levels and duration of heat intensity. The post-flashover persistence of the effects of a glowing connection was subsequently visually evaluated. The intent was to provide fire investigators a resource for the preliminary field evaluation of electrical receptacles as a potential ignition source.

Read more...

 

From Out of the Abyss...

This week’s article from the past is titled Incendiary Fires Can Be Spotted and was written by Benjamin Horton, CPCU, who was President of the National Adjuster Traing School in Louisville, Kentucky..  It is taken from the Decembe 1968 Vol. XVI No.5 issue.

Incendiary Fires Can Be Spotted 

In the new issue of NFPA Journal®, President Jim Shannon said the Association will focus on the leading causes of home fires, including cooking. "We also need to continue to push hard for home fire sprinklers. That's still a large priority for NFPA, and we plan to work very aggressively in 2014 on our residential sprinkler initiative," he said.

Read more...

NFPA 921, Guide for Fire and Explosion Investigations plays a fundamental role in fire and explosion investigations. A new edition of NFPA 921 is scheduled to be published in 2014. For years, this document has played a critical role in the training, education and job performance of fire and explosion investigators. It also serves as one of the primary references used by the National Fire Academy to support its fire/arson-related training and education programs. It is imperative that investigators understand the scope, purpose and application of this document, especially since it will be used to judge the quality and thoroughness of their investigations.

NFPA 921, Guide for Fire and Explosion Investigations plays a fundamental role in fire and explosion investigations. A new edition of NFPA 921 is scheduled to be published in 2014. For years, this document has played a critical role in the training, education and job performance of fire and explosion investigators. It also serves as one of the primary references used by the National Fire Academy to support its fire/arson-related training and education programs. It is imperative that investigators understand the scope, purpose and application of this document, especially since it will be used to judge the quality and thoroughness of their investigations.

Read more...

facebook_imgtwitterbirdlinkedin_image
Member Login         

CCAI Training Seminar - September 24-27, 2018

Click here for the Registration form or Register online

Investigation Nabs Suspects in Car Fire That Seriously Injured LAFD Captain

The Los Angeles Fire Department is pleased to announce the arrest of Maria Porras, 35 and Rigoberto Diaz, 37 both of Los Angeles, in conjunction with an auto-insurance fraud scheme involving an auto fire which occurred near Elysian Park in January 2011.

Read more..

Citronella Candle Hazard

Members and Friends

As you all are aware, we at CCAI want you to be informed. Therefore, I will relate to you an incident that happened in Irvine, CA.

A young school teacher was living in an upscale three story apartment complex on the second floor. The apartment had one bathroom, one bedroom, a living room, and a kitchen area off the living room. The ceiling above the kitchen was at 7 feet while the rest of the apartment was standard height of 8 feet. The apartment has fire sprinklers and one sprinkler is located above the kitchen counter and would reflect water onto the range and counter top if activated.

For some reason the school teacher was burning a Citronella candle on the counter top adjacent to the sink. The candle she purchased was in a small metal bucket with a hoop handle; the candle was not confined in glass. The teacher was washing dishes in the sink when her cat jumped onto the counter top and knocked over the bucket containing the candle. She reacted and reached for the toppled candle with both hands. In one hand she had a glass that she was washing, which contained an amount of water. Some of the water went into the bucket with the candle. A flame came out of the bucket and caused the sprinkler to activate. The water from the sprinkler also got into the bucket and there was an explosion. This entire event happened in a matter of seconds. 

The thought of a candle exploding was a mystery to me and investigator partner, Harry Hatch. We checked several stores trying to purchase the same type of candle the school teacher had described, but no luck. We wanted to see just what the candle would do and also prove or disprove the event.

After looking up Citronella candle fires on the net, we were very surprised to learn that yes, if you add water to a burning Citronella candle it will flare up and sometimes cause an explosion. We all learn something all the time. Be informed and go to yahoo, type in Citronella candle fires and have a look at the videos; you may be as surprised as we were.

Do not be afraid to write us with your hints or new investigation experiences. CCAI is in the business to keep you up to date and informed.

Be Careful Out There
Brad Hamil
Past President
2010

Menifee Man Arrested on Arson Charges

On the evening of Monday, September 5, 2011 at 5:13 p.m., CAL FIRE/Riverside County Firefighters responded to the report of a structure fire at 32870 Sussex States St. in Menifee.

The first arriving engine company found a two-story residence with smoke showing. The fire was contained to the first floor and firefighters remained at the scene several hours for overhaul. One adult female was transported to a local hospital via ground ambulance for smoke inhalation and was displaced from the home due to extensive fire damage.

CAL FIRE Investigators detained and arrested 45-year-old Edwin Monsen at the scene. Edwin was transported to the Detention Center, where he was charged with Arson (PC 451 (b)), Spousal Abuse (PC 273.5) and killing an animal (PC 597).

The Riverside County District Attorney's Office is handling the case. For more information please contact Senior Public Information Specialist John Hall at 951-955-8662.



Author:CAL FIRE/Riverside County Fire Dept. Press Release

Arrest Made in Bloomington High School Fire Ruled Arson

On May 21, 2011 San Bernardino County firefighters responded to an early morning commercial structure fire at the administrative building at Bloomington High School.

Read more..

CAL FIRE Sends DC-10 to Assist With Arizona Wildfire

One of the nation's only DC-10 Very Large Airtankers left California Thursday morning to assist in fighting the wildfire burning in Arizona, according to Bill Peters, a spokesman for CAL FIRE. The DC-10 left its base in Victorville following a request from the United States Forest.

Read more..

More Articles...

Page 15 of 17

15
Banner

Advertise Your Business Here!

 

CCAI Advertisers enjoy unprecedented exposure to professionals in the public and private sector with tens of thousands of targeted visitors each year looking to arson.org for critical information on the state of fire and arson investigation in the United States and worldwide!  

Banner ads should be formatted to 699 x 125 pixels, JPEG or animated GIF or Flash SWF, 100Kb or less. 

Annual advertising rates available.

Join CCAI Today!

Member Benefits:  

~Training in Fire/Arson
   Investigation
~Semi-Annual
  Training Seminars
~Regional Roundtable
  Meetings held
  throughout the State
~Fire Investigative Resources
~Networking between public
  and private agencies:
       Fire, Police, Insurance,
       Private Investigators,
       Attorneys
~Legal Updates
~Certification Development
~Annual Membership Card
~CCAI-CFI Program
~Field Training Exercises
~Videos on
   fire/arson investigations
~Members only area
~Attend Seminars at a
  greatly reduced rate!
~Weekly E-Newsletter
Last month April 2018 Next month
S M T W T F S
week 14 1 2 3 4 5 6 7
week 15 8 9 10 11 12 13 14
week 16 15 16 17 18 19 20 21
week 17 22 23 24 25 26 27 28
week 18 29 30
California Certified Fire Investigator

 

 

 

 

Location

1279 North White Avenue
Pomona, California 91768
Phone:  (909) 865-5004
Fax (909) 865-5024
8:00 am - 5:00 pm
Monday - Friday

Disclaimer

This is the official website of the California Conference of Arson Investigators.

The information published on this website... more... 

 

Login