coin-anim
image image image image image image
Abstract. Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn conditions and new analytical tools, presented an opportunity to evaluate factors influencing fire severity under burning conditions representative of those where management of wildfire for resource benefit is most likely. Fire severity was estimated as the percent change in canopy cover (0–100%) classified from the Relativized differenced Normalized Burn Ratio (RdNBR), and spatial data layers were compiled to determine strength of associations with topography, weather, and variables directly or indirectly linked to fuels, such as vegetation type, number of previous fires, and time since last fire. Detailed fire progressions were used to estimate weather (e.g., temperature, relative humidity, temperature inversions, and solar radiation) at the time of burning. A generalized additive regression model with random effects and an additional spatial term to account for autocorrelation between adjacent locations was fitted to fire severity. In this fire year characterized by the relative absence of extreme fire weather, topographical complexity most strongly influenced severity. Upper- and mid-slopes tended to burn at higher fire severity than lower-slopes. East- and southeast-facing aspects tended to burn at higher severity than other aspects. Vegetation type and fire history were also important predictors of fire severity. Shrub vegetation was more likely to burn at higher severity than mixed hardwood/conifer or hardwood vegetation. As expected, fire severity was positively associated with time since previous fire, but the relationship was non-linear. Of the weather variables analyzed, temperature inversions, common in the complex topography of the Klamath Mountains, showed the strongest association with fire severity. Inversions trapped smoke and had a dampening effect on severity within the landscape underneath the inversion. Understanding the spatial controls on mixed-severity fires allows managers to better plan for future wildfires and aide in the decision making when managing lightning ignitions for resource benefit might be appropriate.

Abstract

Topography, weather, and fuels are known factors driving fire behavior, but the degree towhich each contributes to the spatial pattern of fire severity under different conditions remains poorlyunderstood. The variability in severity within the boundaries of the 2006 wildfires that burned in theKlamath Mountains, northern California, along with data on burn conditions and new analytical tools, presentedan opportunity to evaluate factors influencing fire severity under burning conditions representativeof those where management of wildfire for resource benefit is most likely. Fire severity was estimated asthe percent change in canopy cover (0–100%) classified from the Relativized differenced Normalized BurnRatio (RdNBR), and spatial data layers were compiled to determine strength of associations with topography,weather, and variables directly or indirectly linked to fuels, such as vegetation type, number of previousfires, and time since last fire. Detailed fire progressions were used to estimate weather (e.g.,temperature, relative humidity, temperature inversions, and solar radiation) at the time of burning. A generalizedadditive regression model with random effects and an additional spatial term to account for autocorrelationbetween adjacent locations was fitted to fire severity. In this fire year characterized by therelative absence of extreme fire weather, topographical complexity most strongly influenced severity.

 

From Out of the Abyss...

This week’s article from the past is titled Incendiary Fires Can Be Spotted and was written by Benjamin Horton, CPCU, who was President of the National Adjuster Traing School in Louisville, Kentucky..  It is taken from the Decembe 1968 Vol. XVI No.5 issue.

Incendiary Fires Can Be Spotted 

In the new issue of NFPA Journal®, President Jim Shannon said the Association will focus on the leading causes of home fires, including cooking. "We also need to continue to push hard for home fire sprinklers. That's still a large priority for NFPA, and we plan to work very aggressively in 2014 on our residential sprinkler initiative," he said.

Read more...

White Paper

Study by: Albert Simeoni, Zachary C. Owens, Erik W. Christiansen, Abid KemalExponent, Inc. USAMichael Gallagher, Kenneth L. Clark, Nicholas SkowronskiNorthern Research Station, USDA Forest Service, USAEric V. Mueller, Jan C. Thomas, Simon Santamaria, Rory M. HaddenSchool of Engineering, University of Edinburgh, UK

Albert Simeoni, Zachary C. Owens, Erik W. Christiansen, Abid Kemal Exponent, Inc. USA Michael Gallagher, Kenneth L. Clark, Nicholas Skowronski Northern Research Station, USDA Forest Service, USA Eric V. Mueller, Jan C. Thomas, Simon Santamaria, Rory M. Hadden School of Engineering, University of Edinburgh, UK

ABSTRACT

Two experimental fires, with contrasting intensities, were conducted in March 2016, in the Pinelands National Reserve (PNR) of New Jersey, United States in order to provide a preliminary assessment of the reliability of the fire direction indicators used in wildland fire investigation.  The experiments were part of a larger project intended to measure firebrand production in a forested ecosystem.  As part of this project, fire behavior, as well as the environmental and fuel conditions were also measured.  Two burn parcels, covering an area of approximately 30 hectares each, were ignited from unimproved forest roads which delimited them.  The forest canopy was comprised primarily of pitch pine with intermittent oaks.  The understory contained a mixed shrub layer of huckleberry, blueberry, and scrub oaks. In order to explore a wide range of indicators, objects such as bottles, cans and small fence elements were planted in the burn area, and photographed before and after the fire.  To obtain an accurate measure of pre- and post-fire fuel properties, fuel load, fuel bulk density, and fuel moisture content were also measured. In addition, environmental data (wind velocity and direction, air temperature and humidity) were recorded.  The fire behavior can be reconstructed using measurements of fire rate of spread, fire front temperatures, fire front geometry, and heat fluxes.  Video and infrared cameras were used to document the general fire behavior in selected locations.  This paper represents the first step in the analysis of the fire indicators and focuses on the more intense of the two burns and on the appearance of the macro- and microscale fire pattern indicators.  A majority of the indicators were assessed, although the configuration of the burn parcels, the ignition technique, and precipitation immediately following the fires limited a full study.  The results show that some fire direction indicators are highly dependent on local fire conditions and fire behavior and may be in contradiction with the general spread of the fire.  Overall, this study demonstrates that fire pattern indicators are a useful tool but must be interpreted in the frame of a general analysis of the fire, combined with a good understanding of fire behavior and fire dynamics.

Read more...

NFPA 921, Guide for Fire and Explosion Investigations plays a fundamental role in fire and explosion investigations. A new edition of NFPA 921 is scheduled to be published in 2014. For years, this document has played a critical role in the training, education and job performance of fire and explosion investigators. It also serves as one of the primary references used by the National Fire Academy to support its fire/arson-related training and education programs. It is imperative that investigators understand the scope, purpose and application of this document, especially since it will be used to judge the quality and thoroughness of their investigations.

NFPA 921, Guide for Fire and Explosion Investigations plays a fundamental role in fire and explosion investigations. A new edition of NFPA 921 is scheduled to be published in 2014. For years, this document has played a critical role in the training, education and job performance of fire and explosion investigators. It also serves as one of the primary references used by the National Fire Academy to support its fire/arson-related training and education programs. It is imperative that investigators understand the scope, purpose and application of this document, especially since it will be used to judge the quality and thoroughness of their investigations.

Read more...

Abstract Candles can enhance décor or be a source of light. However, they can also start fires. National estimates of reported fires derived from the U.S. Fire Administration’s National Fire Incident Reporting System (NFIRS) and NFPA’s annual fire department experience survey show that candles were the heat source in an estimated average of 9,300 reported home fires annually during 2009-2013. These fires caused an average of 86 civilian deaths, 827 civilian injuries and $374 million in direct property damage per year. More than one-third (36%) of home candle fires started in the bedroom. Almost three of every five (58%) fires occurred because the candle was too close to something that could burn. Candle fires are most common around the winter holidays. Candles used for light in the absence of electrical power appear to pose a particular risk of fatal fire. Home candle fires climbed through the 1990s but have fallen since the 2001 peak. ASTM F15.45 has developed a number of standards relating to candle fire safety. Despite the considerable progress made in reducing candle fires, they are still a problem. In 2009-2013, candle fires ranked second among the major causes in injuries per thousand fires and average loss per fire. Efforts to prevent these fires must continue.

Abstract

Candles can enhance décor or be a source of light.  However, they can also start fires.  National estimates of reported fires derived from the U.S. Fire Administration’s National Fire Incident Reporting System (NFIRS) and NFPA’s annual fire department experience survey show that candles were the heat source in an estimated average of 9,300 reported home fires annually during 2009-2013.  These fires caused an average of 86 civilian deaths, 827 civilian injuries and $374 million in direct property damage per year.  More than one-third (36%) of home candle fires started in the bedroom.  Almost three of every five (58%) fires occurred because the candle was too close to something that could burn.  Candle fires are most common around the winter holidays.  Candles used for light in the absence of electrical power appear to pose a particular risk of fatal fire.  Home candle fires climbed through the 1990s but have fallen since the 2001 peak.  ASTM F15.45 has developed a number of standards relating to candle fire safety.  Despite the considerable progress made in reducing candle fires, they are still a problem.  In 2009-2013, candle fires ranked second among the major causes in injuries per thousand fires and average loss per fire.  Efforts to prevent these fires must continue.

Read more...

facebook_imgtwitterbirdlinkedin_image
Member Login         
Events Calendar Print Email help
Flat View
See by year
Monthly View
See by month
Weekly View
See by week
Daily View
See Today
Search
Search

Weekly View

15 June 2014 - 21 June 2014
  Preceding Week 15 June 2014 - 21 June 2014 Following Week

JEvents v1.5.4   Copyright © 2006-2010

Banner
Last month June 2014 Next month
S M T W T F S
week 23 1 2 3 4 5 6 7
week 24 8 9 10 11 12 13 14
week 25 15 16 17 18 19 20 21
week 26 22 23 24 25 26 27 28
week 27 29 30
California Certified Fire Investigator

 

 

 

Location

1279 North White Avenue
Pomona, California 91768
Phone:  (909) 865-5004
Fax (909) 865-5024
8:00 am - 5:00 pm
Monday - Friday

Disclaimer

This is the official website of the California Conference of Arson Investigators.

The information published on this website... more...