coin-anim
image image image image image image
Abstract. Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn conditions and new analytical tools, presented an opportunity to evaluate factors influencing fire severity under burning conditions representative of those where management of wildfire for resource benefit is most likely. Fire severity was estimated as the percent change in canopy cover (0–100%) classified from the Relativized differenced Normalized Burn Ratio (RdNBR), and spatial data layers were compiled to determine strength of associations with topography, weather, and variables directly or indirectly linked to fuels, such as vegetation type, number of previous fires, and time since last fire. Detailed fire progressions were used to estimate weather (e.g., temperature, relative humidity, temperature inversions, and solar radiation) at the time of burning. A generalized additive regression model with random effects and an additional spatial term to account for autocorrelation between adjacent locations was fitted to fire severity. In this fire year characterized by the relative absence of extreme fire weather, topographical complexity most strongly influenced severity. Upper- and mid-slopes tended to burn at higher fire severity than lower-slopes. East- and southeast-facing aspects tended to burn at higher severity than other aspects. Vegetation type and fire history were also important predictors of fire severity. Shrub vegetation was more likely to burn at higher severity than mixed hardwood/conifer or hardwood vegetation. As expected, fire severity was positively associated with time since previous fire, but the relationship was non-linear. Of the weather variables analyzed, temperature inversions, common in the complex topography of the Klamath Mountains, showed the strongest association with fire severity. Inversions trapped smoke and had a dampening effect on severity within the landscape underneath the inversion. Understanding the spatial controls on mixed-severity fires allows managers to better plan for future wildfires and aide in the decision making when managing lightning ignitions for resource benefit might be appropriate.

Abstract

Topography, weather, and fuels are known factors driving fire behavior, but the degree towhich each contributes to the spatial pattern of fire severity under different conditions remains poorlyunderstood. The variability in severity within the boundaries of the 2006 wildfires that burned in theKlamath Mountains, northern California, along with data on burn conditions and new analytical tools, presentedan opportunity to evaluate factors influencing fire severity under burning conditions representativeof those where management of wildfire for resource benefit is most likely. Fire severity was estimated asthe percent change in canopy cover (0–100%) classified from the Relativized differenced Normalized BurnRatio (RdNBR), and spatial data layers were compiled to determine strength of associations with topography,weather, and variables directly or indirectly linked to fuels, such as vegetation type, number of previousfires, and time since last fire. Detailed fire progressions were used to estimate weather (e.g.,temperature, relative humidity, temperature inversions, and solar radiation) at the time of burning. A generalizedadditive regression model with random effects and an additional spatial term to account for autocorrelationbetween adjacent locations was fitted to fire severity. In this fire year characterized by therelative absence of extreme fire weather, topographical complexity most strongly influenced severity.

 

From Out of the Abyss...

This week’s article from the past is titled Incendiary Fires Can Be Spotted and was written by Benjamin Horton, CPCU, who was President of the National Adjuster Traing School in Louisville, Kentucky..  It is taken from the Decembe 1968 Vol. XVI No.5 issue.

Incendiary Fires Can Be Spotted 

In the new issue of NFPA Journal®, President Jim Shannon said the Association will focus on the leading causes of home fires, including cooking. "We also need to continue to push hard for home fire sprinklers. That's still a large priority for NFPA, and we plan to work very aggressively in 2014 on our residential sprinkler initiative," he said.

Read more...

White Paper

Study by: Albert Simeoni, Zachary C. Owens, Erik W. Christiansen, Abid KemalExponent, Inc. USAMichael Gallagher, Kenneth L. Clark, Nicholas SkowronskiNorthern Research Station, USDA Forest Service, USAEric V. Mueller, Jan C. Thomas, Simon Santamaria, Rory M. HaddenSchool of Engineering, University of Edinburgh, UK

Albert Simeoni, Zachary C. Owens, Erik W. Christiansen, Abid Kemal Exponent, Inc. USA Michael Gallagher, Kenneth L. Clark, Nicholas Skowronski Northern Research Station, USDA Forest Service, USA Eric V. Mueller, Jan C. Thomas, Simon Santamaria, Rory M. Hadden School of Engineering, University of Edinburgh, UK

ABSTRACT

Two experimental fires, with contrasting intensities, were conducted in March 2016, in the Pinelands National Reserve (PNR) of New Jersey, United States in order to provide a preliminary assessment of the reliability of the fire direction indicators used in wildland fire investigation.  The experiments were part of a larger project intended to measure firebrand production in a forested ecosystem.  As part of this project, fire behavior, as well as the environmental and fuel conditions were also measured.  Two burn parcels, covering an area of approximately 30 hectares each, were ignited from unimproved forest roads which delimited them.  The forest canopy was comprised primarily of pitch pine with intermittent oaks.  The understory contained a mixed shrub layer of huckleberry, blueberry, and scrub oaks. In order to explore a wide range of indicators, objects such as bottles, cans and small fence elements were planted in the burn area, and photographed before and after the fire.  To obtain an accurate measure of pre- and post-fire fuel properties, fuel load, fuel bulk density, and fuel moisture content were also measured. In addition, environmental data (wind velocity and direction, air temperature and humidity) were recorded.  The fire behavior can be reconstructed using measurements of fire rate of spread, fire front temperatures, fire front geometry, and heat fluxes.  Video and infrared cameras were used to document the general fire behavior in selected locations.  This paper represents the first step in the analysis of the fire indicators and focuses on the more intense of the two burns and on the appearance of the macro- and microscale fire pattern indicators.  A majority of the indicators were assessed, although the configuration of the burn parcels, the ignition technique, and precipitation immediately following the fires limited a full study.  The results show that some fire direction indicators are highly dependent on local fire conditions and fire behavior and may be in contradiction with the general spread of the fire.  Overall, this study demonstrates that fire pattern indicators are a useful tool but must be interpreted in the frame of a general analysis of the fire, combined with a good understanding of fire behavior and fire dynamics.

Read more...

NFPA 921, Guide for Fire and Explosion Investigations plays a fundamental role in fire and explosion investigations. A new edition of NFPA 921 is scheduled to be published in 2014. For years, this document has played a critical role in the training, education and job performance of fire and explosion investigators. It also serves as one of the primary references used by the National Fire Academy to support its fire/arson-related training and education programs. It is imperative that investigators understand the scope, purpose and application of this document, especially since it will be used to judge the quality and thoroughness of their investigations.

NFPA 921, Guide for Fire and Explosion Investigations plays a fundamental role in fire and explosion investigations. A new edition of NFPA 921 is scheduled to be published in 2014. For years, this document has played a critical role in the training, education and job performance of fire and explosion investigators. It also serves as one of the primary references used by the National Fire Academy to support its fire/arson-related training and education programs. It is imperative that investigators understand the scope, purpose and application of this document, especially since it will be used to judge the quality and thoroughness of their investigations.

Read more...

Abstract Candles can enhance décor or be a source of light. However, they can also start fires. National estimates of reported fires derived from the U.S. Fire Administration’s National Fire Incident Reporting System (NFIRS) and NFPA’s annual fire department experience survey show that candles were the heat source in an estimated average of 9,300 reported home fires annually during 2009-2013. These fires caused an average of 86 civilian deaths, 827 civilian injuries and $374 million in direct property damage per year. More than one-third (36%) of home candle fires started in the bedroom. Almost three of every five (58%) fires occurred because the candle was too close to something that could burn. Candle fires are most common around the winter holidays. Candles used for light in the absence of electrical power appear to pose a particular risk of fatal fire. Home candle fires climbed through the 1990s but have fallen since the 2001 peak. ASTM F15.45 has developed a number of standards relating to candle fire safety. Despite the considerable progress made in reducing candle fires, they are still a problem. In 2009-2013, candle fires ranked second among the major causes in injuries per thousand fires and average loss per fire. Efforts to prevent these fires must continue.

Abstract

Candles can enhance décor or be a source of light.  However, they can also start fires.  National estimates of reported fires derived from the U.S. Fire Administration’s National Fire Incident Reporting System (NFIRS) and NFPA’s annual fire department experience survey show that candles were the heat source in an estimated average of 9,300 reported home fires annually during 2009-2013.  These fires caused an average of 86 civilian deaths, 827 civilian injuries and $374 million in direct property damage per year.  More than one-third (36%) of home candle fires started in the bedroom.  Almost three of every five (58%) fires occurred because the candle was too close to something that could burn.  Candle fires are most common around the winter holidays.  Candles used for light in the absence of electrical power appear to pose a particular risk of fatal fire.  Home candle fires climbed through the 1990s but have fallen since the 2001 peak.  ASTM F15.45 has developed a number of standards relating to candle fire safety.  Despite the considerable progress made in reducing candle fires, they are still a problem.  In 2009-2013, candle fires ranked second among the major causes in injuries per thousand fires and average loss per fire.  Efforts to prevent these fires must continue.

Read more...

facebook_imgtwitterbirdlinkedin_image
Member Login         

Need to take Fire Investigation 2A & 2B?  Click here


Check out these recent employment opportunities

Flashing-Arrow-Pointing-RightRegister Today for the November 13-15, 2017 Training Seminar in San Luis Obispo.

Click here to book your rooms at the Embassy Suites today.

Hoverboards Put On No-Fly List, As Airlines Cite Fire Concerns

Hoverboards like the one seen here won't be allowed on flights by America's top three airlines, which are citing a potential fire hazard related to the self-balancing scooters' powerful lithium-ion batteries.Citing a potential fire hazard, major U.S. airlines are banning hoverboards from their cabins and cargo holds. Announcing its ban, Delta acknowledged the toy's "presence on many gift lists this holiday season" but said safety comes first.

The bans come as the U.S. Consumer Product Safety Commission says it's looking into at least 10 reports of the self-balancing electric scooters bursting in flames — an occurrence that's allegedly been captured on video, in some cases.

Read more...

Limoss Recalls Battery Power Packs for Power Recliners and Lift Chairs

Recalled Limoss AKKU-PACK battery power packDescription

This recall involves Limoss AKKU-PACK rechargeable lithium ion battery power packs sold as accessories for Palliser, Flexsteel and Best Home Furnishing power recliners and lift chairs. They are used to power the chair when an electrical outlet is not available.  “Limoss Li-ion Battery Pack,” model number ZB-B1800, code MC 160 and dates codes of 11-0102011 through 6-14-2012 are printed on a white sticker on the side of the unit. Recalled battery power packs are black and measure 6 inches long by 3 inches wide.

 

Read the full details at CPSC.

Horizon Hobby Recalls E-flite Chargers

Recalled E-flite Ultra Micro-4, 4x9W, AC/DC Battery Charger
Description

This recall involves the EFLC1105 E-flite Ultra Micro-4, 4x9W, AC/DC Battery Charger from E-flite. The charger has four independently functioning charge circuits with a LED status display. Each port can charge one 30–150mAh, 1S UM cell, a 1S MCPX cell, or one 120–300mAh 2S pack equipped with a JST-PH, 3-wire connector. The charger measures 5 inches tall by 7 inches wide by 1.5 inches deep.  The charger is blue with a gray, black and blue faceplate with white and black type. “Eflite Celectra UMX-$ Battery Charger” is printed across the center of the charger.

 

See the full details at CPSC

Nestlé Waters North America Recalls Water Dispensers

Description

This recall involves Nestlé three and five gallon cold and hot water dispensers. The units are white and silver in color and measure about 38 inches tall by 13 inches wide. Water is dispensed from the large plastic water bottle on the top of the unit through the machine by pushing on the paddles below that are marked with blue for cold water and red for hot water. The Nestlé Waters North America logo is on the front of the units. Only the following model and serial numbers are included in this recall. The model and serial numbers are printed on a white sticker on the back of the units.
 

Details can be seen at CPSC.
 

 

Recalled Nestlé water dispenser
Model Numbers
Serial Numbers

deBW210EZ

BW210EZES

LB15A12606

LB15A12620

LB15A12622

LB15A12631

LB15A12670

LB15A12687

LB15A12690

LB15A12762

LB15A12763

LB15A12848

LB15A12849

LB15A12870

LB15A12888

GM Threatened With Regulatory Investigation Before Issuing Recall For Fire-Prone Hummers

July 14, 2015

Last week, General Motors announced that it would recall nearly 196,000 Hummer vehicles because simply turning on the heating or cooling system could set the car ablaze.While we reported that federal regulators had received nearly two dozen consumer complaints about the issue over the past seven years, a new report finds that the real number of reported incidents is much higher, and that GM may have continued to put off issuing the recall had it not been for threats of an investigation.

Jalopnik, citing sources with the National Highway Traffic Safety Administration, reported earlier today that General Motors only recalled the model year 2006 to 2010 Hummer H3 and model year 2009 to 2010 H3T after regulators threatened to open a formal investigation into the issue.

According to GM, the issue with the Hummer vehicles is related to an electrical part in the heating and cooling system that can overheat and cause a fire inside the dashboard.

Jalopnik reports that the first fire related to the blower issue occurred in August 2008 and was reported to NHTSA the following month.

However, a chronology report [PDF] posted by NHTSA at the time of the recall alleges the company only learned about the issue after receiving two consumer complaints through its Speak Up For Safety program in September 2014.

Read more...

More Articles...

Page 4 of 17

4
Banner

Advertise Your Business Here!

 

CCAI Advertisers enjoy unprecedented exposure to professionals in the public and private sector with tens of thousands of targeted visitors each year looking to arson.org for critical information on the state of fire and arson investigation in the United States and worldwide!  

Banner ads should be formatted to 699 x 125 pixels, JPEG or animated GIF or Flash SWF, 100Kb or less. 

Annual advertising rates available.

Join CCAI Today!

Member Benefits:  

~Training in Fire/Arson
   Investigation
~Semi-Annual
  Training Seminars
~Regional Roundtable
  Meetings held
  throughout the State
~Fire Investigative Resources
~Networking between public
  and private agencies:
       Fire, Police, Insurance,
       Private Investigators,
       Attorneys
~Legal Updates
~Certification Development
~Annual Membership Card
~CCAI-CFI Program
~Field Training Exercises
~Videos on
   fire/arson investigations
~Members only area
~Attend Seminars at a
  greatly reduced rate!
~Weekly E-Newsletter
Last month September 2017 Next month
S M T W T F S
week 35 1 2
week 36 3 4 5 6 7 8 9
week 37 10 11 12 13 14 15 16
week 38 17 18 19 20 21 22 23
week 39 24 25 26 27 28 29 30
California Certified Fire Investigator

 

 

 

 

Location

1279 North White Avenue
Pomona, California 91768
Phone:  (909) 865-5004
Fax (909) 865-5024
8:00 am - 5:00 pm
Monday - Friday

Disclaimer

This is the official website of the California Conference of Arson Investigators.

The information published on this website... more... 

 

Login