coin-anim
image image image image image image
“Computer Graphics and Evidence Presentation” Abstract In the UK forensic animations are becoming an increasingly important visual aid in courtroom situations, where complex data relating to a sequence of events is being visualised before a general public who may have little or no understanding of established forensic procedure or methodology. This paper will introduce and discuss a spectrum of new technologies that utilise new developments in Computer Graphics (CG) and Virtual Reality (VR) for a range of incident investigation and presentation scenarios.

Abstract

In the UK forensic animations are becoming an increasingly important visual aid in courtroom situations,where complex data relating to a sequence of events is being visualized before a general public who may have little or no understanding of established forensic procedure or methodology. This paper will introduce and discuss a spectrum of new technologies that use new developments in Computer Graphics (CG) and Virtual Reality (VR) for a range of incident investigation and presentation scenarios.

Read more... 

The detection of adulteration of fuels and its use in criminal scenes like arson has a high interest in forensic investigations. In this work, a method based on gas chromatography (GC) and neural networks (NN) has been developed and applied to the identification and discrimination of brands of fuels such as gasoline and diesel without the necessity to determine the composition of the samples. The study included five main brands of fuels from Spain, collected from fifteen different local petrol stations. The methodology allowed the identification of the gasoline and diesel brands with a high accuracy close to 100%, without any false positives or false negatives. A success rate of three blind samples was obtained as 73.3%, 80%, and 100%, respectively. The results obtained demonstrate the potential of this methodology to help in resolving criminal situations.

Research Article

The detection of adulteration of fuels and its use in criminal scenes like arson has a high interest in forensic investigations. In thiswork, a method based on gas chromatography (GC) and neural networks (NN) has been developed and applied to the identification and discrimination of brands of fuels such as gasoline and diesel without the necessity to determine the composition of the samples.The study included five main brands of fuels from Spain, collected from fifteen different local petrol stations. The methodology allowed the identification of the gasoline and diesel brands with a high accuracy close to 100%, without any false positives or false negatives. A success rate of three blind samples was obtained as 73.3%, 80%, and 100%, respectively. The results obtained demonstrate the potential of this methodology to help in resolving criminal situations.

Log-in to Read more... 

members only access

Abstract

Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6 mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity-output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17 % more CO2 than flanking and 9.5 % more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.

Read more... 

INTRODUCTION This report describes new full-scale compartment fire experiments, which include local measurements of temperature, heat flux and species composition, and global measurements of heat release rate and mass burning rate. The measurements are unique to the compartment fire literature. By design, the experiments provided a comprehensive and quantitative assessment of major and minor carbonaceous gaseous species and soot at two locations in the upper layer of fire in a full scale ISO 9705 room [1]. Fire protection engineers, fire researchers, regulatory authorities, fire service and law enforcement personnel use fire models (such as the NIST Fire Dynamics Simulator, FDS[2]) for design and analysis of fire safety features in buildings and for post-fire reconstruction and forensic applications. Fire field models have historically showed limited ability to accurately and reliably predict the thermal conditions and chemical species in underventilated compartment fires. Formal validation efforts have shown that for well ventilated compartment fires, with the exception perhaps of soot, field models do quite well in predicting temperature and species when experimental uncertainty is accounted for. Inaccurate predictions of incomplete burning and soot levels impact calculations of radiative heat transfer, burning rates, and estimates of human tenability. High-quality (relatively low, quantified uncertainty) measurements of fire gas species, temperature, and soot from the interior of underventilated compartment fires are needed to guide the development and validation of improved fire field models.

Introduction

This report describes new full-scale compartment fire experiments, which include localmeasurements of temperature, heat flux and species composition, and global measurements ofheat release rate and mass burning rate. The measurements are unique to the compartment fireliterature. By design, the experiments provided a comprehensive and quantitative assessment ofmajor and minor carbonaceous gaseous species and soot at two locations in the upper layer offire in a full scale ISO 9705 room [1].

Fire protection engineers, fire researchers, regulatory authorities, fire service and lawenforcement personnel use fire models (such as the NIST Fire Dynamics Simulator, FDS[2]) fordesign and analysis of fire safety features in buildings and for post-fire reconstruction andforensic applications. Fire field models have historically showed limited ability to accuratelyand reliably predict the thermal conditions and chemical species in underventilated compartmentfires. Formal validation efforts have shown that for well ventilated compartment fires, with theexception perhaps of soot, field models do quite well in predicting temperature and species whenexperimental uncertainty is accounted for. Inaccurate predictions of incomplete burning and sootlevels impact calculations of radiative heat transfer, burning rates, and estimates of humantenability. High-quality (relatively low, quantified uncertainty) measurements of fire gasspecies, temperature, and soot from the interior of underventilated compartment fires are neededto guide the development and validation of improved fire field models.

Read more... 

From Out of the Abyss...

This week’s article from the past is titled Incendiary Fires Can Be Spotted and was written by Benjamin Horton, CPCU, who was President of the National Adjuster Traing School in Louisville, Kentucky..  It is taken from the Decembe 1968 Vol. XVI No.5 issue.

Incendiary Fires Can Be Spotted 

ABSTRACT The open kitchen design in small residential units where fire load density and occupant load are very high introduces additional fire risk. One big concern is that whether flash-over can occur which may trigger a big post flashover fire, resulting in severe casualties and big property damage. It is important to understand and predict the critical conditions for flashover in this kind of units. Based on a two-layer zone model, the probability of flashover is investigated by a nonlinear dynamical model. The temperature of the smoke layer is taken as the only state variable and the evolution equation is developed in the form of a simplified energy balance equation for the hot smoke layer. Flashover is considered to occur at bifurcation points. Then the influence of the floor dimensions and the radiation feedback coefficient on flashover conditions is examined. When the dimensions of the floor vary, the resulting changes in internal surface area or size of floor area both have effect on the flashover conditions. When the radiation feedback coefficient is of small value, there is no possibility of flashover. With the increase of the radiation feedback coefficient, at first it significantly affects the conditions for flashover and then moderately when it reaches a larger value. It is proved that the flashover phenomenon can be demonstrated well by nonlinear dynamical system and it helps to understand the effect of various control parameters.

Abstract

The open kitchen design in small residential units where fire load density and occupant load are very high introduces additional fire risk. One big concern is that whether flash-over can occur which may trigger a big post flashover fire, resulting in severe casualties and big property damage. It is important to understand and predict the critical conditions for flashover in this kind of units. Based on a two-layer zone model, the probability of flashover is investigated by a nonlinear dynamical model. The temperature of the smoke layer is taken as the only state variable and the evolution equation is developed in the form of a simplified energy balance equation for the hot smoke layer. Flashover is considered to occur at bifurcation points. Then the influence of the floor dimensions and the radiation feedback coefficient on flashover conditions is examined. When the dimensions of the floor vary, the resulting changes in internal surface area or size of floor area both have effect on the flashover conditions. When the radiation feedback coefficient is of small value, there is no possibility of flashover.  With the increase of the radiation feedback coefficient, at first it significantly affects the conditions for flashover and then moderately when it reaches a larger value. It is proved that the flashover phenomenon can be demonstrated well by nonlinear dynamical system and it helps to understand the effect of various control parameters.

Read more... 

Poll

Do you read the e-newsletter every week?

Register now for the upcoming CCAI Training Seminar - October 17 - 19, 2016

Click below to access the form

Registration form

Click here to make your discounted hotel reservations at Embassy Suites

Recalls

Recall Date: May 22, 2014
Recall Number: 14-190

Cordelia Lighting Recalls Two-Lamp Fluorescent Shop Lights Due to Fire Hazard; Sold Exclusively at Home Depot

Description

This recall involves Commercial Electric brand basic hanging shop lights that use two, 48-inch, two-pin, T8, fluorescent lamps. The recalled shop light is a metal light fixture with four plastic lamp sockets and a white finish. It is 48 inches long, 4.25 inches wide and 2.5 inches high and has two 10.5-inch long chains for hanging. The lamp sockets must be snapped into place during installation. Model number CESL401-06 and SKU number 201-462 are printed on a white label on the top of the fixture.

 

Click here for full details

 

Recall Date: May 13, 2014
Recall Number: 14-173

Paramount Recalls Trident Ultraviolet Sanitation Systems for Pools Due to Fire Hazard

Description

This recall involves all Paramount Trident Series 2 (UV II) ultraviolet sanitation systems.  The sanitation systems are a gray tube that stands 32 inches high by 11 inches in diameter.  They are plumbed into the pool’s water circulation pipes and plugged in or hard-wired into an electrical system. The pool’s water runs through the unit and is sanitized by ultraviolet lamps. This is a secondary sanitation system used in conjunction with chemical sanitizers such as chlorine or bromine. “Trident UV II” or “Series 2 Trident Ultraviolet Corporation UV Sanitation System” is printed on a black label on the front of the units. In addition, a silver sticker on the units has the following wording “Paramount Series 2 Ultraviolet Pool Sanitizer System,” “Trident Series 2 Ultraviolet Water Treatment System” or “Trident Ultra UV Series 2 Water Treatment System” and a date code of 9/9/2013 or later. Some date codes consist of a series of letters. Consumers with letters in the date code need to go to www.1paramount.com to determine if their unit is included in the recall.

 

Click here for full details

Back to Basics: The Fire Tetrahedron

How often have you heard the phrase “back to the basics”? It seems
as though every time you turn around you are being instructed to go
“back to the basics,” whether it’s with our children and their math
homework or it’s in the fire service with establishing a water supply,
advancing a hose line, or conducting ventilation. The “basics” are
those tasks that you need to complete first, and they must be completed
every time.

Coffee Break Training

How often have you heard the phrase “back to the basics”? It seems as though every time you turn around you are being instructed to go “back to the basics,” whether it’s with our children and their math homework or it’s in the fire service with establishing a water supply,advancing a hose line, or conducting ventilation. The “basics” are those tasks that you need to complete first, and they must be completed every time.

Read more... 

White Paper-NHTSA

A Case Study of 214 Fatal Crashes Involving Fire.
Carl L. Ragland
National Highway Traffic Safety Administration
Hsi-Sheng Hsia
Research and Special Programs Administration
United States
Paper Number 9X-S4-O-08
Carl L. Ragland
National Highway Traffic Safety Administration
Hsi-Sheng HsiaResearch and Special Programs Administration
United States
Paper Number 9X-S4-O-08

ABSTRACT
A detailed case study of 214 fatal tire related 
crashes was conducted to determine whether the death was 
caused by the fire or blunt trauma. The cases were also 
examined to determine the specific crash conditions which 
caused the fire. This analysis was necessary because none 
of the existing fatal crash databases contained sufficient 
details to determine the impact configuration or the cause 
of death. Two hundred and ninety three (293) fatalities 
occurred in these crashes. Sixty-five (65) ofthese fatalities 
resulted from fire, with 30 of these fatalities from 16 rear 
impacts. The speed of impact was determined in eight of 
the 16 cases which caused these 30 burn fatalities. In these 
eight cases, the average rear impact speed was 54 mph with 
speeds ranging from 50 - 60 mph, at 7 1% overlap (7 1 % of 
the rear vehicle width engaged), and collinear at 6:00 
O’clock. By projecting these cases to the national sample, 
the number of rear impact fire related fatalities may be 
estimated between 94 and 191.

Wildfire Origin and Cause Investigation

Part 1

As the spring fire season approaches, fire investigators across the country will be responding to wildfires to conduct origin and cause investigations. In many jurisdictions, investigators are assigned to a type of investigation that is unfamiliar. During the response, the investigator may be thinking that it is no big deal, having already investigated hundreds of structure fires. How hard can a wildfire be? The answer is simple; you must be trained in wildfire investigation to understand the process.

Read more...

Part 2

In Part 2 of “Wildfire Origin and Cause Investigation,” we will continue to discuss the main points for the local fire investigator to focus on when conducting a wildfire investigation. Hopefully, last month’s article was an eyeopener for some local investigators to expand their education. The topics we will cover this month will be fire cause determination and fire cause categories/ignition sources. Investigators should become familiar with NFPA 921 and NWCG Wildfire Origin and Cause Determination Handbook.

Read more...

Zero-clearance fireplaces a main source of fires

Chief: Almost one-third of High Desert house fires caused by zero-clearance fireplaces

A Helendale house fire earlier this month that caused $50,000 in damages was the latest in a string of residential blazes to be traced to a zero-clearance fireplace, a County Fire official said.

Battalion Chief Warren Peterson blames zero-clearance fireplaces for roughly 30 percent of house fires responded to by San Bernardino County Fire.

Read more...

More Articles...

Page 8 of 17

8
Banner

Advertise Your Business Here!

 

CCAI Advertisers enjoy unprecedented exposure to professionals in the public and private sector with tens of thusands of targeted visitors each year looking to arson.org for critical information on the state of fire and arson investigation in the United States and worldwide!  

Banner ads should be formatted to 699 x 125 pixels, JPEG or animated GIF or Flash SWF, 100Kb or less. 

Annual advertising rates available.

Join CCAI Today!

Member Benefits:  

~Training in Fire/Arson
   Investigation
~Semi-Annual
  Training Seminars
~Regional Roundtable
  Meetings held
  throughout the State
~Fire Investigative Resources
~Networking between public
  and private agencies:
       Fire, Police, Insurance,
       Private Investigators,
       Attorneys
~Legal Updates
~Certification Development
~Annual Membership Card
~CCAI-CFI Program
~Field Training Exercises
~Videos on
   fire/arson investigations
~Members only area
~Attend Seminars at a
  greatly reduced rate!
~Weekly E-Newsletter
Last month August 2016 Next month
S M T W T F S
week 31 1 2 3 4 5 6
week 32 7 8 9 10 11 12 13
week 33 14 15 16 17 18 19 20
week 34 21 22 23 24 25 26 27
week 35 28 29 30 31
California Certified Fire Investigator

 

 

 

Location

1279 North White Avenue 
Pomona, California 91768 
Phone:  (909) 865-5004
Fax (909) 865-5024 
8:00 am - 5:00 pm 
Monday - Friday

 

 

 

 

Disclaimer

This is the official website of the California Conference of Arson Investigators.

The information published on this website... more... 

 

Login